2007年5月9日星期三

常用算法---第 3 章 动态规划【Part3】

3.2.4 最短路径

假设G为有向图,其中每条边都有一个长度(或耗费),图中每条有向路径的长度等于该路径中各边的长度之和。对于每对顶点(i, j),在顶点i 与j 之间可能有多条路径,各路径的长度可能各不相同。我们定义从i 到j 的所有路径中,具有最小长度的路径为从i 到j 的最短路径。

例3-15 如图1 5 - 4所示。从顶点1到顶点3的路径有

1) 1,2,5,3

2) 1,4,3

3) 1,2,5,8,6,3

4) 1,4,6,3

由该图可知,各路径相应的长度为1 0、2 8、9、2 7,因而路径3) 是该图中顶点1到顶点3的最短路径。

在所有点对最短路径问题( a l l - p a i r sshorest-paths problem)中,要寻找有向图G中每对顶点之间的最短路径。也就是说,对于每对顶点(i, j),需要寻找从i到j 的最短路径及从j 到i 的最短路径。因此对于一个n 个顶点的图来说,需寻找p =n(n-1) 条最短路径。假定图G中不含有长度为负数的环路,只有在这种假设下才可保证G中每对顶点(i, j) 之间总有一条不含环路的最短路径。当有向图中存在长度小于0的环路时,可能得到长度为-∞的更短路径,因为包含该环路的最短路径往往可无限多次地加上此负长度的环路。

设图G中n 个顶点的编号为1到n。令c (i, j, k)表示从i 到j 的最短路径的长度,其中k 表示该路径中的最大顶点。因此,如果G中包含边,则c(i, j, 0) =边 的长度;若i= j ,则c(i,j, 0)=0;如果G中不包含边,则c (i, j, 0)= +∞。c(i, j, n) 则是从i 到j 的最短路径的长度。

例3-16 考察图1 5 - 4。若k=0, 1, 2, 3,则c (1, 3, k)= ∞;c (1, 3, 4)= 2 8;若k = 5, 6, 7,则c (1, 3,k) = 1 0;若k=8, 9, 10,则c (1, 3, k) = 9。因此1到3的最短路径长度为9。对于任意k>0,如何确定c (i, j, k) 呢?中间顶点不超过k 的i 到j 的最短路径有两种可能:该路径含或不含中间顶点k。若不含,则该路径长度应为c(i, j, k- 1 ),否则长度为c(i, k, k- 1) +c (k, j, k- 1 )。c(i, j, k) 可取两者中的最小值。因此可得到如下递归式:

c( i, j, k)= m i n {c(i, j, k-1), c (i, k, k- 1) +c (k, j, k- 1 ) },k>0

以上的递归公式将一个k 级运算转化为多个k-1 级运算,而多个k-1 级运算应比一个k 级运算简单。如果用递归方法求解上式,则计算最终结果的复杂性将无法估量。令t (k) 为递归求解c (i, j, k) 的时间。根据递归式可以看出t(k) = 2t(k- 1 ) +c。利用替代方法可得t(n) = ( 2n )。因此得到所有c (i, j, n) 的时间为(n2 2n )。

当注意到某些c (i, j, k-1) 值可能被使用多次时,可以更高效地求解c (i, j, n)。利用避免重复计算c(i, j, k) 的方法,可将计算c 值的时间减少到(n3 )。这可通过递归方式(见程序1 5 - 7矩阵链问题)或迭代方式来实现。出迭代算法的伪代码如图1 5 - 5所示。



/ /寻找最短路径的长度

/ /初始化c(i,j,1)

for (int i=1; i < = n ; i + +) for (int j=1; j<=n; j+ + ) c ( i ,j, 0 ) = a ( i ,j); // a 是长度邻接矩阵 / /计算c ( i ,j, k ) ( 0 < k="1;k<="n;k++)" i="1;i<="n;i++)" j=" 1" t="">

void AdjacencyWDigraph::Allpairs(T **c, int **kay)

{ / /所有点对的最短路径

/ /对于所有i和j,计算c [ i ] [ j ]和k a y [ i ] [ j ]

/ /初始化c [ i ] [ j ] = c(i,j,0)

for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { c[i][j] = a[i][j]; kay[i][j] = 0; } for (i = 1; i <= n; i++) c[i][i] = 0; // 计算c[i][j] = c(i,j,k) for (int k = 1; k <= n; k++) for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { T t1 = c[i][k]; T t2 = c[k][j]; T t3 = c[i][j]; if (t1 != NoEdge && t2 != NoEdge && (t3 == NoEdge || t1 + t2 < i ="="" t="">

void OutputPath(T **c, int **kay, T NoEdge, int i, int j)

{// 输出从i 到j的最短路径

if (c[i][j] == NoEdge) {

cout << "There is no path from " << i=" 1时,(" cu="" a="" x="" ci="" 20="" ns="" 6="" 8="" 3="" 7="" 9="" ze="" traceback="" 0="" n="" m="" n2="" 5="" 11="" void="" s="" i="2," z="" e="" 1="" for="" int="" j="">< j =" C[1];" i =" 2;" j =" 0;" j =" C[i];" j =" n;" m =" 0;" i =" n;"> 1; i--)

// i 号n e t在M N S中?

if (size[i][j] != size[i-1][j]){// 在M N S中

Net[m++] = i;

j = C[i] - 1;}

// 1号网组在M N S中?

if (j >= C[1])

Net[m++] = 1; // 在M N S中

}

3.2.6 元件折叠

在设计电路的过程中,工程师们会采取多种不同的设计风格。其中的两种为位-片设计(bit-slice design)和标准单元设计(standard-cell design)。在前一种方法中,电路首先被设计为一个元件栈(如图15-10a 所示)。每个元件Ci 宽为wi ,高为hi ,而元件宽度用片数来表示。图15-10a 给出了一个四片的设计。线路是按片来连接各元件的,即连线可能连接元件Ci 的第j片到元件Ci+1 的第j 片。如果某些元件的宽度不足j 片,则这些元件之间不存在片j 的连线。当图1 5 -10a 的位-片设计作为某一大系统的一部分时,则在V L SI ( Very Large Scale Integrated) 芯片上为它分配一定数量的空间单元。分配是按空间宽度或高度的限制来完成的。现在的问题便是如何将元件栈折叠到分配空间中去,以便尽量减小未受限制的尺度(如,若高度限制为H时,必须折叠栈以尽量减小宽度W)。由于其他尺度不变,因此缩小一个尺度(如W)等价于缩小面积。可用折线方式来折叠元件栈,在每一折叠点,元件旋转1 8 0°。在图15-10b 的例子中,一个1 2元件的栈折叠成四个垂直栈,折叠点为C6 , C9 和C1 0。折叠栈的宽度是宽度最大的元件所需的片数。在图15-10b 中,栈宽各为4,3,2和4。折叠栈的高度等于各栈所有元件高度之和的最大值。在图15-10b 中栈1的元件高度之和最大,该栈的高度决定了包围所有栈的矩形高度。

实际上,在元件折叠问题中,还需考虑连接两个栈的线路所需的附加空间。如,在图1 5 -10b 中C5 和C6 间的线路因C6 为折叠点而弯曲。这些线路要求在C5 和C6 之下留有垂直空间,以便能从栈1连到栈2。令ri 为Ci 是折叠点时所需的高度。栈1所需的高度为5 ?i =1hi +r6,栈2所需高度为8 ?i=6hi +r6+r9。

在标准单元设计中,电路首先被设计成为具有相同高度的符合线性顺序的元件排列。假设此线性顺序中的元件为 C1,.,Cn,下一步元件被折叠成如图1 5 - 11所示的相同宽度的行。在此图中, 1 2个标准单元折叠成四个等宽行。折叠点是C4,C6 和C11。在相邻标准单元行之间,使用布线通道来连接不同的行。折叠点决定了所需布线通道的高度。设li 表示当Ci 为折叠点时所需的通道高度。在图1 5 - 11的例子中,布线通道1的高度为l4,通道2的高度为l6,通道3的高度为l11。位-片栈折叠和标准单元折叠都会引出一系列的问题,这些问题可用动态规划方法来解决。
1. 等宽位-片元件折叠

定义r1 = rn+1 =0。由元件Ci 至Cj 构成的栈的高度要求为j ?k= ilk+ ri+ rj + 1。设一个位-片设计中所有元件有相同宽度W。首先考察在折叠矩形的高度H给定的情况下,如何缩小其宽度。设Wi

为将元件Ci 到Cn 折叠到高为H的矩形时的最小宽度。若折叠不能实现(如当ri +hi>H时),取Wi =∞。注意到W1 可能是所有n 个元件的最佳折叠宽度。

当折叠Ci 到Cn 时,需要确定折叠点。现假定折叠点是按栈左到栈右的顺序来取定的。若第一点定为Ck+ 1,则Ci 到Ck 在第一个栈中。为了得到最小宽度,从Ck+1 到Cn 的折叠必须用最优化方法,因此又将用到最优原理,可用动态规划方法来解决此问题。当第一个折叠点k+ 1已知时,可得到以下公式:

Wi =w+ Wk + 1 (1 5 - 9)

由于不知道第一个折叠点,因此需要尝试所有可行的折叠点,并选择满足( 1 5 - 9)式的折叠点。令h s u m(i,k)=k ?j = ihj。因k+ 1是一个可行的折叠点,因此h s u m(i, k) +ri +rk+1 一定不会超过H。

根据上述分析,可得到以下动态规划递归式:

这里Wn+1 =0,且在无最优折叠点k+ 1时Wi 为∞。利用递归式(1 5 - 1 0),可通过递归计算Wn , Wn- 1., W2 , W1 来计算Wi。Wi 的计算需要至多检查n-i+ 1个Wk+ 1,耗时为O (n-k)。因此计算所有Wi 的时间为O (n2 )。通过保留式(1 5 - 1 0)每次所得的k 值,可回溯地计算出各个最优的折叠点,其时间耗费为O (n)。

现在来考察另外一个有关等宽元件的折叠问题:折叠后矩形的宽度W已知,需要尽量减小其高度。因每个折叠矩形宽为w,因此折叠后栈的最大数量为s=W / w。令Hi, j 为Ci , ., Cn 折叠成一宽度为jw 的矩形后的最小高度, H1, s 则是所有元件折叠后的最小高度。当j= 1时,不允许任何折叠,因此:Hi,1 =h s u m(i,n) +ri , 1≤i≤n

另外,当i=n 时,仅有一个元件,也不可能折叠,因此:Hn ,j=hn+rn , 1≤j≤s

在其他情况下,都可以进行元件折叠。如果第一个折叠点为k+ 1,则第一个栈的高度为

h s u m(i,k) +ri +rk+ 1。其他元件必须以至多(j- 1 ) *w 的宽度折叠。为保证该折叠的最优性,其他元件也需以最小高度进行折叠.

因为第一个折叠点未知,因此必须尝试所有可能的折叠点,然后从中找出一个使式(1 5 - 11)的右侧取最小值的点,该点成为第一个折叠点。

可用迭代法来求解Hi, j ( 1≤i≤n, 1≤j≤s),求解的顺序为:先计算j=2 时的H i, j,再算j= 3,.,以此类推。对应每个j 的Hi, j 的计算时间为O (n2 ),所以计算所有H i, j 的时间为O(s n2 )。通过保存由( 1 5 - 1 2)式计算出的每个k 值,可以采用复杂性为O (n) 的回溯过程来确定各个最优的折叠点。

2. 变宽位-片元件的折叠

首先考察折叠矩形的高度H已定,欲求最小的折叠宽度的情况。令Wi 如式(1 5 - 1 0)所示,按照与(1 5 - 1 0)式相同的推导过程,可得:

Wi = m i n {w m i n(i, k) +Wk+1 | h s u m(i,k)+ ri +rk+ 1≤H, i≤k≤n} (1 5 - 1 3)

其中Wn+1=0且w m i n(i,k)= m ini≤j≤k{wj }。可用与(1 5 - 1 0)式一样的方法求解(1 5 - 1 3)式,所需时间为O(n2 )。

当折叠宽度W给定时,最小高度折叠可用折半搜索方法对超过O(n2 )个可能值进行搜索来实现,可能的高度值为h(i,j)+ri +rj + 1。在检测每个高度时,也可用( 1 5 - 1 3)式来确定该折叠的宽度是否小于等于W。这种情况下总的时间消耗为O (n2 l o gn)。

3. 标准单元折叠

用wi 定义单元Ci 的宽度。每个单元的高度为h。当标准单元行的宽度W 固定不变时,通过减少折叠高度,可以相应地减少折叠面积。考察Ci 到Cn 的最小高度折叠。设第一个折叠点是Cs+ 1。从元件Cs+1 到Cn 的折叠必须使用最小高度,否则,可使用更小的高度来折叠Cs+1 到Cn,从而得到更小的折叠高度。所以这里仍可使用最优原理和动态规划方法。

令Hi , s 为Ci 到Cn 折叠成宽为W的矩形时的最小高度,其中第一个折叠点为Cs+ 1。令w s u m(i, s)=s ?j = iwj。可假定没有宽度超过W的元件,否则不可能进行折叠。对于Hn,n 因为只有一个元件,不存在连线问题,因此Hn, n =h。对于H i, s(1≤i<s≤n)注意到如果w s u m(i, s )>W,不可能实现折叠。若w s u m(i,s)≤W,元件Ci 和C j + 1 在相同的标准单元行中,该行下方布线通道的高度为ls+ 1(定义ln+1 = 0)。因而:Hi, s = Hi+1, k (1 5 - 1 4)

当i=s<n 时,第一个标准单元行只包含Ci 。该行的高度为h 且该行下方布线通道的高度为li+ 1。因Ci+ 1 到Cn 单元的折叠是最优的.

为了寻找最小高度折叠,首先使用式( 1 5 - 1 4)和(1 5 - 1 5)来确定Hi, s (1≤i≤s≤n)。最小高度折叠的高度为m in{H1 , s}。可以使用回溯过程来确定最小高度折叠中的折叠点。

常用算法---第 1 章 贪婪算法【Part1】

常用算法---第 1 章 贪婪算法【Part2】

常用算法---第 1 章 贪婪算法【Part3】

常用算法---第 2 章 分而治之算法【Part1】

常用算法---第 2 章 分而治之算法【Part2】

常用算法---第 2 章 分而治之算法【Part3】

常用算法---第 2 章 分而治之算法【Part4】

常用算法---第 3 章 动态规划【Part1】

常用算法---第 3 章 动态规划【Part2】

常用算法---第 3 章 动态规划【Part3】

常用算法---第 4 章 回溯【Part1】

常用算法---第 4 章 回溯【Part2】

常用算法---第 4 章 回溯【Part3】

常用算法---第 5 章 分枝定界【Part1】

常用算法---第 5 章 分枝定界【Part2】

常用算法---第 5 章 分枝定界【Part3】

没有评论: