2007年5月9日星期三

常用算法---第 2 章 分而治之算法【Part2】

2.2.2 归并排序

可以运用分而治之方法来解决排序问题,该问题是将n 个元素排成非递减顺序。分而治之方法通常用以下的步骤来进行排序算法:若n 为1,算法终止;否则,将这一元素集合分割成两个或更多个子集合,对每一个子集合分别排序,然后将排好序的子集合归并为一个集合。

假 设仅将n 个元素的集合分成两个子集合。现在需要确定如何进行子集合的划分。一种可能性就是把前面n- 1个元素放到第一个子集中(称为A),最后一个元素放到第二个子集里(称为B)。按照这种方式对A递归地进行排序。由于B仅含一个元素,所以它已经排序完 毕,在A排完序后,只需要用程序2 - 1 0中的函数i n s e r t将A和B合并起来。把这种排序算法与I n s e r t i o n S o r t(见程序2 - 1 5)进行比较,可以发现这种排序算法实际上就是插入排序的递归算法。该算法的复杂性为O (n 2 )。把n 个元素划分成两个子集合的另一种方法是将含有最大值的元素放入B,剩下的放入A中。然后A被递归排序。为了合并排序后的A和B,只需要将B添加到A中即 可。假如用函数M a x(见程序1 - 3 1)来找出最大元素,这种排序算法实际上就是S e l e c t i o n S o r t(见程序2 - 7)的递归算法。

假如用冒泡过程(见程序2 - 8)来寻找最大元素并把它移到最右边的位置,这种排序算法就是B u b b l e S o r t(见程序2 - 9)的递归算法。这两种递归排序算法的复杂性均为(n2 )。若一旦发现A已经被排好序就终止对A进行递归分割,则算法的复杂性为O(n2 )(见例2 - 1 6和2 - 1 7)。

上述分割 方案将n 个元素分成两个极不平衡的集合A和B。A有n- 1个元素,而B仅含一个元素。下面来看一看采用平衡分割法会发生什么情况: A集合中含有n/k 个元素,B中包含其余的元素。递归地使用分而治之方法对A和B进行排序。然后采用一个被称之为归并( m e rg e)的过程,将已排好序的A和B合并成一个集合。

例2-5 考虑8个元素,值分别为[ 1 0,4,6,3,8,2,5,7 ]。如果选定k = 2,则[ 1 0 , 4 , 6 , 3 ]和[ 8 , 2 , 5 , 7 ]将被分别独立地排序。结果分别为[ 3 , 4 , 6 , 1 0 ]和[ 2 , 5 , 7 , 8 ]。从两个序列的头部开始归并这两个已排序的序列。元素2比3更小,被移到结果序列;3与5进行比较,3被移入结果序列;4与5比较,4被放入结果序列; 5和6比较,.。如果选择k= 4,则序列[ 1 0 , 4 ]和[ 6 , 3 , 8 , 2 , 5 , 7 ]将被排序。排序结果分别为[ 4 , 1 0 ]和[ 2 , 3 , 5 , 6 , 7 , 8 ]。当这两个排好序的序列被归并后,即可得所需要的排序序列。

图2 - 6给出了分而治之排序算法的伪代码。算法中子集合的数目为2,A中含有n/k个元素。

template

void sort( T E, int n)

{ / /对E中的n 个元素进行排序, k为全局变量

if (n >= k) {

i = n/k;

j = n-i;

令A 包含E中的前i 个元素

令B 包含E中余下的j 个元素

s o r t ( A , i ) ;

s o r t ( B , j ) ;

m e rge(A,B,E,i,j,); //把A 和B 合并到E

}

else 使用插入排序算法对E 进行排序

}

图14-6 分而治之排序算法的伪代码



从对归并过程的简略描述中,可以明显地看出归并n个元素所需要的时间为O (n)。设t (n)为分而治之排序算法(如图1 4 - 6所示)在最坏情况下所需花费的时间,则有以下递推公式:

其中c 和d 为常数。当n / k≈n-n / k 时,t (n) 的值最小。因此当k= 2时,也就是说,当两个子集合所包含的元素个数近似相等时, t (n) 最小,即当所划分的子集合大小接近时,分而治之算法通常具有最佳性能。

可 以用迭代方法来计算这一递推方式,结果为t(n)= (nl o gn)。虽然这个结果是在n为2的幂时得到的,但对于所有的n,这一结果也是有效的,因为t(n) 是n 的非递减函数。t(n) =(nl o gn) 给出了归并排序的最好和最坏情况下的复杂性。由于最好和最坏情况下的复杂性是一样的,因此归并排序的平均复杂性为t (n)= (nl o gn)。

图2 - 6中k= 2的排序方法被称为归并排序( m e rge sort ),或更精确地说是二路归并排序(two-way merge sort)。下面根据图1 4 - 6中k= 2的情况(归并排序)来编写对n 个元素进行排序的C + +函数。一种最简单的方法就是将元素存储在链表中(即作为类c h a i n的成员(程序3 -8))。在这种情况下,通过移到第n/ 2个节点并打断此链,可将E分成两个大致相等的链表。

归并过程应能将两个已排序的链表归并在一 起。如果希望把所得到C + +程序与堆排序和插入排序进行性能比较,那么就不能使用链表来实现归并排序,因为后两种排序方法中都没有使用链表。为了能与前面讨论过的排序函数作比较, 归并排序函数必须用一个数组a来存储元素集合E,并在a 中返回排序后的元素序列。为此按照下述过程来对图1 4 - 6的伪代码进行细化:当集合E被化分成两个子集合时,可以不必把两个子集合的元素分别复制到A和B中,只需简单地在集合E中保持两个子集合的左右边界即 可。接下来对a 中的初始序列进行排序,并将所得到的排序序列归并到一个新数组b中,最后将它们复制到a 中。图1 4 - 6的改进版见图1 4 - 7。



template

M e rgeSort( T a[], int left, int right)

{ / /对a [ l e f t : r i g h t ]中的元素进行排序

if (left < i =" (left" n=" 8时的归并(和复制)过程,方括号表示一个已排序序列的首和尾。">

void MergeSort(T a[], int n)

{// 使用归并排序算法对a[0:n-1] 进行排序

T *b = new T [n];

int s = 1; // 段的大小

while (s <>

void MergePass(T x[], T y[], int s, int n)

{// 归并大小为s的相邻段

int i = 0;

while (i <= n - 2 * s) { // 归并两个大小为s的相邻段 Merge(x, y, i, i+s-1, i+2*s-1); i = i + 2 * s; } // 剩下不足2个元素 if (i + s < j =" i;">

void Merge(T c[], T d[], int l, int m, int r)

{// 把c[l:m]] 和c[m:r] 归并到d [ l : r ] .

int i = l, // 第一段的游标

j = m+1, // 第二段的游标

k = l; // 结果的游标

/ /只要在段中存在i和j,则不断进行归并

while ((i <= m) &&amp; (j <= r)) if (c[i] <= c[j]) d[k++] = c[i++]; else d[k++] = c[j++]; // 考虑余下的部分 if (i > m) for (int q = j; q <= r; q++)

d[k++] = c[q];

else for (int q = i; q <= m; q++)

d[k++] = c[q];

}

自 然归并排序(natural merge sort)是基本归并排序(见程序1 4 - 3)的一种变化。它首先对输入序列中已经存在的有序子序列进行归并。例如,元素序列[ 4,8,3,7,1,5,6,2 ]中包含有序的子序列[ 4,8 ],[ 3,7 ],[ 1,5,6 ]和[ 2 ],这些子序列是按从左至右的顺序对元素表进行扫描而产生的,若位置i 的元素比位置i+ 1的元素大,则从位置i 进行分割。对于上面这个元素序列,可找到四个子序列,子序列1和子序列2归并可得[ 3 , 4 , 7 , 8 ],子序列3和子序列4归并可得[ 1 , 2 , 5 , 6 ],最后,归并这两个子序列得到[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]。因此,对于上述元素序列,仅仅使用了两趟归并,而程序1 4 - 3从大小为1的子序列开始,需使用三趟归并。作为一个极端的例子,假设输入的元素序列已经排好序并有n个元素,自然归并排序法将准确地识别该序列不必进行 归并排序,但程序1 4 - 3仍需要进行[ l o g2 n] 趟归并。因此自然归并排序将在(n) 的时间内完成排序。而程序1 4 - 3将花费(n l o gn) 的时间。

常用算法---第 1 章 贪婪算法【Part1】

常用算法---第 1 章 贪婪算法【Part2】

常用算法---第 1 章 贪婪算法【Part3】

常用算法---第 2 章 分而治之算法【Part1】

常用算法---第 2 章 分而治之算法【Part2】

常用算法---第 2 章 分而治之算法【Part3】

常用算法---第 2 章 分而治之算法【Part4】

常用算法---第 3 章 动态规划【Part1】

常用算法---第 3 章 动态规划【Part2】

常用算法---第 3 章 动态规划【Part3】

常用算法---第 4 章 回溯【Part1】

常用算法---第 4 章 回溯【Part2】

常用算法---第 4 章 回溯【Part3】

常用算法---第 5 章 分枝定界【Part1】

常用算法---第 5 章 分枝定界【Part2】

常用算法---第 5 章 分枝定界【Part3】

没有评论: